| 
View
 

Gas-Phase Pollutant Research Projects

This version was saved 11 years, 10 months ago View current version     Page history
Saved by Nicholas Clements
on February 12, 2013 at 11:39:55 am
 

PICTURE

 

Gas Sensor intro and why do research.

 


 

Mobile Air Quality Sensing (MAQS) Project

Ricardo Piedrahita, Nick Masson, Ashley Collier, Yifei Jiang, Kun Li, Xiang Yun

PICTURE

 

The MAQS project is working on using low cost technology for continuous networked personal monitoring of carbon monoxide, carbon dioxide, ozone, nitrogen dioxide, and volatile organic compounds.

Cooking up Clean Air -- Scaled-up Air Quality and Health Impacts of Clean Cookstoves in Ghana.  

Investigating the health benefit of solar powered lighting vs. traditional kerosene lamps in rural Ugandan dwellings.

 


 

Natural Gas Emissions Project

Joanna Gordon, OTHER PEOPLE

 

DESCRIPTION

 


 

Dry-Deposition-Flux Chamber Project

Berkeley Almand, Nick Masson, Ricardo Piedrahita

 

 

Our research group is working on developing inexpensive flux chambers to measure gas-phase dry deposition. Dry deposition occurs when gases or particles are deposited onto a surface (water, ground, vegetation, etc.) in the absence of precipitation. The deposition of compounds such as SO2, NO, NO2, HNO3, O3, and NH3 can damage vegetation and aquatic ecosystems. Dry deposition accounts 25-80% of atmospheric deposition (depending on location), and dry deposition measurements are expensive and/or complex. As a result, most regulatory sites do not measure dry deposition, but measure ambient concentrations and use models to determine fluxes. This method is problematic because the models can disagree with measurements by up to 100%.

 

Our research effort addresses this issue by developing a robust, inexpensive, and continuous multiple-species gas-flux monitoring system, which will be able to provide data for a variety of relevant atmospheric pollutants.  We are working on developing inexpensive sensors ($5-100) for our flux chambers, as well as exploring the possibility of connecting the chambers to existing instruments. While working towards our ultimate goal of a complete instrument that costs less than $5000, we can use our chambers with existing instruments to take flux measurements at sites that could previously only measure concentration.

 


 

NICK'S PROJECT

PEOPLE

PICTURE

 

DESCRIPTION

 


 

ASHLEY'S PROJECT

PEOPLE 

PICTURE

 

DESCRIPTION

 

Comments (0)

You don't have permission to comment on this page.